Rho/ROCK pathway inhibition by the CDK inhibitor p27(kip1) participates in the onset of macrophage 3D-mesenchymal migration.

نویسندگان

  • Philippe Gui
  • Arnaud Labrousse
  • Emeline Van Goethem
  • Arnaud Besson
  • Isabelle Maridonneau-Parini
  • Véronique Le Cabec
چکیده

Infiltration of macrophages into tissue can promote tumour development. Depending on the extracellular matrix architecture, macrophages can adopt two migration modes: amoeboid migration--common to all leukocytes, and mesenchymal migration--restricted to macrophages and certain tumour cells. Here, we investigate the initiating mechanisms involved in macrophage mesenchymal migration. We show that a single macrophage is able to use both migration modes. Macrophage mesenchymal migration is correlated with decreased activity of Rho/Rho-associated protein kinase (ROCK) and is potentiated when ROCK is inhibited, suggesting that amoeboid inhibition participates in mechanisms that initiate mesenchymal migration. We identify the cyclin-dependent kinase (CDK) inhibitor p27(kip1) (also known as CDKN1B) as a new effector of macrophage 3D-migration. By using p27(kip1) mutant mice and small interfering RNA targeting p27(kip1), we show that p27(kip1) promotes mesenchymal migration and hinders amoeboid migration upstream of the Rho/ROCK pathway, a process associated with a relocation of the protein from the nucleus to the cytoplasm. Finally, we observe that cytoplasmic p27(kip1) is required for in vivo infiltration of macrophages within induced tumours in mice. This study provides the first evidence that silencing of amoeboid migration through inhibition of the Rho/ROCK pathway by p27(kip1) participates in the onset of macrophage mesenchymal migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p27Kip1 modulates cell migration through the regulation of RhoA activation.

The tumor suppressor p27(Kip1) is an inhibitor of cyclin/cyclin-dependent kinase (CDK) complexes and plays a crucial role in cell cycle regulation. However, p27(Kip1) also has cell cycle-independent functions. Indeed, we find that p27(Kip1) regulates cell migration, as p27(Kip1)-null fibroblasts exhibit a dramatic decrease in motility compared with wild-type cells. The regulation of motility by...

متن کامل

بررسی متیلاسیون راه‌انداز p27Kip1 در بیماران مبتلا به کولیت اولسرو

Background & Aims: The CDK inhibitor (CDKI) protein p27kip1 (p27) negatively regulates cyclin D–CDK4 complex in the G1 phase. Alterations in the expression of p27 kip1 cause a degradation of cell growth and promote the development of various diseases. Aberrant methylation patterns have been reported in large number of diseases. The purpose of this study was to investigate the methylation ...

متن کامل

Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression.

PURPOSE The authors' previous study showed that the expression of a Rho-associated serine/threonine kinase (ROCK) is regulated during cell cycle progression in corneal epithelial cells. The present study was conducted to determine whether and how Rho/ROCK signaling regulates cell cycle progression. METHODS Rabbit corneal epithelial cells (RCECs) in culture were arrested in the G(0) phase of t...

متن کامل

Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions.

Hepatocyte growth factor (HGF) signaling via its receptor, the proto-oncogene Met, alters cell proliferation and motility and has been associated with tumor metastasis. HGF treatment of HepG2 human hepatocellular carcinoma cells induces cell migration concomitant with increased levels of the p27(kip1) cyclin-cdk inhibitor. HGF signaling resulted in nuclear export of endogenous p27 to the cytopl...

متن کامل

Role of Rho-kinase and p27 in angiotensin II-induced vascular injury.

Angiotensin II enhances the development of atherosclerotic lesion in which cellular proliferation and/or migration are critical steps. Although cyclin-dependent kinase inhibitor, p27, and Rho/Rho-kinase pathway have recently been implicated as factors regulating these events cooperatively, their role in vivo has not been fully elucidated. We evaluated the contribution of p27 and Rho-kinase to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 18  شماره 

صفحات  -

تاریخ انتشار 2014